

CUBESPACE

FABIEN VIENNE / 2008

CUBESPACE 2008

CUBESPACE EST UNE CONSTRUCTION GEOMETRIQUE QUI ABORDE LA DESCRIPTION DES STRUCTURES DE L'ESPACE A PARTIR DE MOUVEMENTS DU CUBE.

VOLONTAIREMENT DIDACTIQUE ET PRAGMATIQUE CETTE DESGRIPTION DEVELOPPE UNE DEMARCHF LINEAIRE PROGHE DE LA MECAHIQUE EXIGEANT PEU DE CONNAISSANGES PREALABLES * ${ }^{*}$.

LE CODE COULEUR DES DIRECTIONS DE L'ESPACE EST EMPRUNTE A "ZOMETOOL" QUI JMPULSE DEPUSS PLUSIEURS ANNEES D'INTERESSANTES EXPLORATIONS GEOMETRIQUES.

* SANS POUR AUTANT MINIMISER L' MMPORTANCE DE NOMBREUSES ETUDES QUI ONT ETE FAITES SUR CE SUJET, AUXQUELLES IL N'EST PAS FAIT REFERENCE.

CUBESPACE 2008 PREAMBULE

- TOUT COMMENCE pAR UN poInt

POINT

LIGNE
DROITE

1 DIMENSION

SURFACE CARREE

2 DIMENSIONS

VOLUME CUBIQUE

3 DIMENSIDNS

PUIS SON MOUVEMENT QUI SUPPDSE
UN ESPACE, UN TEMPS, UNE DIRECTION

- LE MOUVEMENT DUN POINT DETERMINE LINE LIGNE

DROITE, COURBE, OUVERTE OU FERMEE, FINIE OU INFINIE.
UNE INFINITE DE LIGNES PEUVENT ETRE ISSUES D'UN POINT OU PASSER PAR UN POINT.

LA LIGNE DROITE LIMITEEE PAR 2 POINTS EST L'UNITE DE MESURE DES LONGUEURS

- LE MOUVEMENT D'UNE LIGNE DETERMTAE UNE SURFACE *

PLANE, COURBE, OLIVERTE OU FERMEE, FINIE OU INFINIE.
UNE INFINITE DE SURFACES PEUVENT EIRE ISSUES D'UNE LIGNE OUPASSER PAR UNE LIGNE.

LA SURFACE PLANE LIMITEE PAR 4 DROITES EGALES PERPENDICULAIRES ENTRE ELLES (CARRE),
EST L'UNITE DEMESURE DES SURFACES.

- LE MOUVEMENT D'UNE SURFACE DETERMINE UN VOLUME *

PORTION D'ESFACE LIMITÉE PAR UNE OU PLUSIEURS SURFACES, IL EST TOUNDURS FERMEE, FINI, ET DISTINCT DE L'ESPACE EXTERIEUR:
UNE INFINTE DE VOLUMES PEUVENT ETRE ISSUS DUNE SURFACE OU PASSER PAR LINE SURFACE.

LE VOLUME LIMITÉ PAR 6 CARRÉS EGAUX PERPENDICULAIRES ENTRE EUX (CUBE),
EST L'UNITE DE MESURE DES VOLUMES.

4 DIMENSIONS

CUBE

- LE CUBE - POLYEDRE COMPOSEDE:
- le mouvement dun volume détermine UN AUTRE VOLUME OU UN HYPERVOLUME DANS LA QUATRIEME DIMENSION APPA~ RENTEE A L'ESPACE TEMPS

PROJECTION A 2 DIMENSIONS DE LA PROUECTION A 3 DIMENSIONS D'UN CUBE A 4DIMENSIONS: HYPERCUBE
16 SOMMETS \rightarrow POINTS
32 ARETES \rightarrow IIGNES
24 FACES \rightarrow SURFACES
8 CELLULES

AUTRE PROJECTION ANALOGUE CONCENIRIQUE DEL'HYPERCUBE.

- on pelt imaginer la structure de L'ESPACE COMME ETANT L'MBRICATION DE VOLUMES,
COMPOSÉS DE SUFACES,
ENTOUREEES PAR DES LIGNES,
LIMITEES PARDES POINTS,
QU: ASSEMBLEES, PROLONGÉS, REDEETËS... PEUVENT FORMER DES RESEAUX COMPLEXES, INFINIS, MOUVANTS...

COMME PAR EXEMPLE, POURQUOI PAS, LE GIGANTESQUE POLYEDRE SRE 8?

240 SOMMETS
8 SOMMETS
12 ARETES
6 FACES

EST PRIS COMME BASE POUR EXPLIPUER, A PARTIR DE SES MOUYEMENTS, LA GEOMETRIE DANS L'ESPACE.

$$
\text { SYSTEME STATIQUE - } 1
$$

- La direction 1 (bleu)

CETTE DIRECTION EST CELLE DES ARETES DES CUBES.

LONGUEUR DE BASE : ARETE DU CUBE = 1

- TRAME CARREE

2 ARETES REPETEES ET PROLONGEES DANS UN MEME PLAN, FORMENT UNE GRILLE A MAILLES CARREES DANS CE PLAN (OU PLUSIEURS GRILLES DANS DES PLANS PARALLELES ENTRE EUX $>$

- RESEAU CUBIQUE

LES 12 ARETES REPETEES ET PROLONGEES FORMENT DES GRILLES A MAILLES CARREES CROISEES PERPENDIGULAIREMENT DANS LES 3 PLANS DES FACES D'UN CUBE

ELIES CORRESPONDENT A UN EMPILEMENT DE CUBES D'ARETES EGALES A 1

CETTE DIRECTION EST CELLEE DES DIAGUNALES DES FACES DES CUBES

LONGUEUR $\sqrt{2}(1,414 \ldots)$ EN RAPPORT $\triangle V E C$ LARETE DU CUBE $=1$

- G ORIENTATIONS-1 TETRAEDRE

DANS UN CUBE CETTE DIRECTION PREND 6 ORIENTATIONS QUI SONT CELLES DES 6 ARETES D'UN TETRAEDRE, AVEC UNE SEULE DIAGONALE SUR CHAQUE FACE.

CES 6 ORIENTATIONS SONT EGALEMENT CELLES DE LA PLUPART DES ARETES ET DES DIAGONALES DES ROLYEDRES DU SYSTEME STATIQUE

- TRAME TRIANGULAIRE

3 dIAGONALES REPETEES ET PROLONGEES, DANS UN MEME PLAN,FORMENT UNE GRILLE A MAILLES TRIANGULAIRES EYUILATERALES DANS CE PLAN (OU PLUSIEURS GRILLES DANS DES PLANS PARALLELES ENTRE EUX)

- RESEAU TETRA/octa

LES 6 DIAGONALES REPETEES ET PROLONGEES FORMENT DES GRILLES A MAILLES TRIANGULAIRES CROISEES DANS LES 4 PLANS DES FACES D'UNTETRAEDRE.

LENSEMBLE DU RESEAU TETRA/OCTA CORRESPOND A UN EMPILEMENT DE TETRAEDRES ET D'OLTAEDRES, DARETES EGAEES A $\sqrt{2}$, ET ALTERNE LA SYMETRIE CUBIQUE.

- double reseau tetra/octa AVEC 2 DIAGONALES CROISEES SUR GHAQUE FACE DES CUBES, LES ARETES PARALLELES DOUBLENT L'ENSEMBLE DU RESEAU TETRA/ OCTA DANS LE MEME ESPACE ET SUPPRIMENT L'ALTERNANCE DE LA SYMETRIE CUBIQUE.

SYSTEME STATIQUE $-\sqrt{3}$

- La direction $\sqrt{3}$ (jaune)

CETTE DIRECTION EST CELLE DES DIAGONALES DES CUBES COMPRISE ENTRE 2 SOMMETS OPPOSES
LONGUEUR $\sqrt{3}(1.732 \ldots)$ EN RAPPORT AVEC L'ARETE DUCUBE = 1

- 4 ORIENTATIONS

DANS UN CUBE CETTE DIRECTION PREND 4 ORIENTATIONS RELIANT 2A2 SES 8 SOMMETS EN PASSANT PAR LE GENTRE

- GRANATOEDRE

LES MAILLES DU RESEAU RHOMBIQUE FORMENT LES 12 FACES D'UN GRANATOEDRE CIRCONSCRIT A UN CUBE, AVEC 24 ARETES EGALES $A \sqrt{3} / 2$

L'ENSEMBLE DU RESEAU RHOMBIQUE CORRESPOND A UN DOUBLE EMPILEMENT DE GRANATOedres attaché au double reseau cubique.

systeme statique - recapitulation

- 3 DIRECTIONS DE BASE

- 13 orientations

LES 13 ORIENTATIONS DU SYSTEME STATIQUE SONT PERPENDICULAIRES $\triangle U X 26$ FACES DU PETIT RHOMBICUBDCTAEDRE,OPPOSEEES $2 A 2$.

$$
6 \text { BLEU - } 12 \text { VERT - } 8 \text { JAUNE }
$$

- DISPOSITION DES POLYEDRES

LE GRANATOEDRE (OU DODECAEDRE RHOMBIQUE) DONT LES 14 SOMMETS SONT COMMUNS A TOUS GEUX DES DOLYEDRES DE BASE DU SYSTEME STATIQUE, ORDONNE LEUR DISPOSITION LA PLUS TYPIQUE.

CUBE	NOIR	ARETE $=1$
TETRAEDRE	VERTF	$=\sqrt{2}$
OCTAEDRE	VERTC.	$=\sqrt{2}$
GRANATOEDRE	$=\sqrt{2}$	
SUUNE		$=\sqrt{3} / 2$

- caracteristiques

LE SYSTEME STATIQUE EST CARACTERISE PAR LE RAPPORT PROPORTIONNEL $1 / \sqrt{2}$ (DIAGONALE DU CARRE, FACE DUCUBE)

SA CROISSANCE DANS I'ESPACE REUT ETRE CONCENTRIQUE AVEC UNE PROGRES -
SION DES GRANDEURS 1,2.4.8... MAIS
ELLE EST ESSENTIELLEMENT REPETITIVE PAR EMPILEMENT DES POLYEDRES QUI REMPLISSENT CET ESPACE PAR JUXTAPOSITION DE LEURS FACES.
(D'OÜ SON APPELLATION: SYSTEME STATIQUE)
CROISSANCE DU GRAN ATOEORE PAR LE PRDLONGEMENT DE SES AGETES.

- LES 5 CUBES

UN MOUVEMENT DE ROTATION DU CUGE AUTOUR DE CHACUNE DE SES 4 DIAGONALES $\sqrt{3}$ (JAUNE), DETERMINE LA SYMETRIE CONCENTRIQUE DE 5 CUBES $(1+4)$ LORSQUE LES SOMMETS DES CUBES EN ROTATION SE JOIGNENT $2 A Z$.

ILS FORMENT ALORS, AVEC LES 8 SOMMETS DU CUBE INITIAL, LES $2 O$ SOMMETS D'UN DODECAEDRE REGULIER.

ET LEURS AREYES SE RECOUPENT ENTRE ELLES DIVISANT LEUR LONGUEUR EN SEGMENTS PROPORTIONNELS A \varnothing

LA DIRECTION 1 (BLEU)

CETTE DIRECTION PREND 15 ORIENTATIONS QU) SONT CELLES DES ARETES DES 5 CUBES (5×3) AVEC DES LONGUEURS MODULEES DANS LA PROGRESSION $\phi(1,618)$ EN RAPPORT AVECL'ARETE DU CUBE $=1$

ELLES CORRESPONDENT A LA PLUPART DES ARETES ET DES DIAGONALES DES POLYEDRES OU SYSTEME DYNAMIQUE, PAR EXEMPLE:

$1 / \Phi$ ARETE DU DODECAEDRE ϕ
DIAGONALE DE LICOSIDODECAEDRE

LA DIRECTION $\sqrt{3}$ (JALNE)

CETTE DIRECTION PREND 10 ORIENTATIONS QUI SONT CEILES DES DIAGDNALES DU DQDE CAEDRE, IDENTIQUES ET CONFDNDUES \triangle CELLES OES 5 CUBES.

LES ARETES ET LES DIAGONALES DANS LA DIRECTION $\sqrt{3}$ DU SYSTEME DYNAMIQUE PEUYENT AUSS! AVORR DES LONGUEURS MODLSLEES DANS LA PROGRESSION D ($1,618 \ldots$)
MAIS EN RAPPORT AVEC LA VALEUR $\sqrt{3}(1.732 \ldots)$
PAR EXEMPLE:
$\sqrt{\frac{3}{2} / \Phi}$ ARETE DE L'ENNEACONTAEDRE.

- La direction $\sqrt{\Phi+2}$ (rouge)

CETTE DIRECTION EST CELLE DES AXES DE SYMETRIE DES 5 CUBES, ELLE CORRESPOND AU CENTRE DES FACES DU DODECAEDRE ET AUX DIAGONALES DE SON DUAL L'ICDSAEDRE LONGUEUR $\sqrt{\Phi+2}(1.902 \ldots)$ EN RAPPORT AVEC L'ARETE DU CUBE

- G orientations

DANS L'ICOSAEDRE CETTE DIRECTION PREND LES 6 ORIENTATIONS RELIANT 2 A2 SES 12 SOMMETS OPPOSÉS EN PASSANT PAR SON CENTRE

CES 6 ORIENTATIONS ORDONNENT LA STUCTURE CONCENTRIQUE DE TOUS LES POLYEDRES DU SYSTEME DYNAMIQUE.

- RESEAUX

DE CE FAIT, LES ARETES PROLONGEES DE CES POLTEDRES FORMENT DES RESEAUX CONCENTRIQUES ETOILÉS DONT LES INTER SECTIONS, A CHAQUE NIVEAU DE CROISSANCE CORRESPONDENT AUX SOMMETS D'AUTRES POLYEDRES AVEC DES LONGUEURS D'ARETES EN PROGRESSION D'ORDRE ϕ

PAR EXEMPLE: LE PROLONGEMENT DES ARETES $=$ Y DUN ICOSAEDRE FORMENT UN ICOSAEDRE ETOILE D'ARETES = Φ DONT LES 20 SOMMETS SONT CEUX D'UN DODECAEDRE DARETES $=\$ \ldots$

- TRIACONTAEDRE

LES 20 SOMMETS DU DODECAEDRE DARETE $=1 / \Phi$ ETLES 12SOMMETS DE L'ICOSAEDRE D'ARETE = 1 SONT CEUX D'UN TRIACONTAEDRE AVEC 60 ARETES DANS LESGORIENTATIONS $\sqrt{\phi+2}$ EGALESA $\frac{\sqrt{\Phi+2}}{2} / \phi$
CES ARETES PROLONGEES FORMENT UN RESEAU RHOMBIQUE CONCENTIQUE PRESENTANT UN EMBOITEMENT SUCCESSIF DE TRIACONTAEDRFS DANS LA PROGRESSION ϕ.

- 3 DIRECTIONS DE BASE

- 31 ORIENTATIONS

LES 31 ORIENTATIONS DU SYSTEME DYNAMIQUE SONT PERPENDICULAIRES AUX 52 FACES DU PETIT RHOMBICOSIDODECAEDRE, OPPOSEES 2A2.

```
3 0 ~ B L E U ~ - ~ 2 0 ~ J A U N E ~ - ~ 1 2 ~ R O U G E ~
```


- DISPOSITION DES POLYEDRES

LE TRIACONTAEDRE (RHOMBIQUE)
DONT LES 32 SOMMETS SONT COMMUNS A TOUS CEUX DES POLYEDRES DE BASE DU SYSTEME DYNAMIQUE, ORDONNE LEUR DISPOSITION LA PLUS TYPIQUE

CUBE	NOIR	ARETE $=1$
DODECAEDRE	BLEUF.	$"$
ICOSAEDRE	BLEUC.	$n=1$
TRIACONTAEDRE	$=1$	
ROUGE	n	$=\frac{\sqrt{\Phi+2}}{\Phi}$

CARACTERISTIQUES

LE SYSTEME DYNAMIQUE EST CARACTERISE PAR LE RAPPORT PROPORTIONNEL 1/ゆ (DIAGONALE DU PENTAGONE , FACE DU DODECAEDRE)

SA CROISSANCE DANS L'ESPACE PEUT ETRE REPETITIVE SANS ORDONNANCE PARTICULIERE MAIS ELLE EST ESSENTIELLEMENT CONCENTRIQUE AVEC UNE PROGRESSION DES GRAN DEURS DORDRE Φ ENTRAINANT LE MOUVEMENT ET LA MULTIPLICATION DE TOUTES LES CONFIGURATIONS.
(D'OU SON APDELLATION ; SYSTEME DYNAMIOUE)

QROISSANCE DU TRIACONTAEDRE PAR LE PROLONGEMENT DE SES ARETES.

ENSEMBLE $\left[\begin{array}{l}\text { SYSTEME STATIQUE } \\ \text { SYSTEME DYNAMIQUE }\end{array}\right.$
INTEGRATION $\sqrt{2}$ (VERT)
LA DIRECTION $\sqrt{2}$ (VERT) QUI NINTERVIENT PAS DANS LA STRUCTURF DU SYSTEME:
DYNAMIQUE EST ENTRAINEE PAR LES ROTAYIONS DU CUBE ET SES TRANSFORMATIONS SONT ANALOGLES A CELLES DES DIRECTIONS 1 (BLEU) ET $\sqrt{3}$ (J.AUNE)

DANS LE SYSTEME DYNAMIQUE, ELLE PREND DONG 30 ORIENTATIONS (6×5) AVEC DES LONGUEURS QUI PEUVENT AUSSI ETRE MODULEES DANSLA PROGRESSION Ф EN RAPRORT AVEC LA VALEUR $\sqrt{2}$

- 4 dIrections de base
$\left.\begin{array}{ll}1 \text { Er } \phi & (\text { BLEU } \\ \sqrt{2} & \text { (VERT } \\ \sqrt{3} & \text { (JAUNE } \\ \sqrt{\Phi+2} & \text { (ROUGE }\end{array}\right)$
- 61 orientations

1 ET ${ }^{\text {E }}$	(BLEU)	x	15
$\sqrt{2}$	(VERT)	x	30
$\sqrt{3}$	(VAUNE)	\times	10
$\sqrt{\phi+2}$	(ROUGE)	\times	6

- CARACTERISTIQUES

L'INTEGRATION DES 2 SYSTEMES EST DOMINEE PAR LA NON CONCORDANCE NUMERIQUE DES VALEURS $\sqrt{2}$ ET Φ DANS LEURS RAPPORTS PROPORTIONNELS. CE QUI DONNE LA COMPLEXITE MAIS AUSSI LA RICHESSE DES CONFIGURATIONS QUI PEUVENT EN RESULTER.

LA STRUCTURE DU SYSTEME DYNAMIQUE MULTIPLIE PAR 5 CHAQUE ELEMENT OU L'ENSEMBLE DES RESEAUX DU SYSTEME STATIQUE

L'ENSEMBLE FORME UN TOUT DONT LES 2 SYSTEMES APPARENTES SONT INDISSOCIABLES.

- CARACTERISTIQUES

CETTE SYMETRIE PORTE A 10 LES POSITIONS CONCENTRIQUES D'UN CUBE MULTIPLIANT D'AUTANT LES RESAUX DU S, DYNAMIGUE ETSUPPRIME L'ALTERNANCE DE SYMETRIE DES RESEAUX CUBTQUES DU S.STATIQUE.

DE13 A 181 ORIENTATIONS, ET AU-DELA

SYSTEME STATIOUE 3 DIRECTIONS-13DRIENTATIONS

ENSEMBLE DES 2 SYSTEMES 4 DIRECTIONS - 61 ORIENTATIONS

AU-DELA, 61 GRANDS CERCLES 17 DIRECTIONS-691 ORIENTATIONS

SYSTEME DYNAMIQUE 3 DIRECTIONS-31 ORIENTATIONS

SYMETRIE DE L'ENSEMBLE 4 DIRECTIONS - 181 ORIENTATIONS

DANS L'IMBRICATION TRES COMPLEXE DES DIFFERENTS RESEAUX DE SYMETRIES OBTENUS A PARTIR DES MOUYEMENTS DU CUEE, LA SELECTION PEMMET DISOLEF DES STRUCTURES ADPARENTEES AUSSI BIEN AUX PAVAGES APERIODIQUES, AUX CROISSANCES PRACTALES OU AUX PROJECTIONS DESHYPERVOLUMES ... QU'AUX ORGANISMEG NA. TURELS MINERAUX, VEGETAUX, ANIMAUX...
BASE
drincipaux polyedres - orientation faces
BASE

